ECE 560: EMB. SYS. ARCHITECTURES
PROJECT 2: SHIELDS UP

Arpad Voros

aavoros

INTRODUCTION

The purpose of this project is to alter the current software architecture of a given blinking high-brightness LED (HBLED) system so that various
faults are properly handled to keep the system running smoothly without breaking. The current of the HBLED is controlled in a linearly decreasing
& increasing fashion, producing a sawtooth wave. An oscilloscope and logic analyzer (AD2) is used to observe the analog signal that is the set &
measured current of the HBLED, as well as various debug signals coming from the MCU. Faults are injected into the system using a routine which
changes the values of vital control variables, acquires a mutex to block a thread, causes stack overflow via an infinite recursive call, and more. The
program will continue to run where, in most cases, the program never self-corrects. To prevent this, the faults must be properly handled by
implemented self-correcting aspects & fail-safes within the current software architecture.

Each fault presented within this report is exactly 1 page long, accompanied by a description of the fault, before/after oscilloscope figures with
descriptions, listings of added code, the approach taken to handle the fault, and an evaluation on its effectiveness.

ADDITIONAL NOTES

Some of the figures from the AD2 are difficult to see, due to the requirement of having 1 page per fault. Faults 0 through 6 have smaller & less
legible scope figures than Faults 7 through 12, therefore an appendix is included to display larger versions of the former.

During the time of exporting these figures, either there was a mistake with some DIO connections or | was sampling at a low rate, but the digital
channels for Control_HBLED and ADC_IRQ_Handler (and sometimes others) appear not to display at the proper high frequency they should be.
Nevertheless, these two channels aren’t used frequently in explanation of handling faults so it should not impact the quality of the report.

FAULT 0 — PID_FX

€& Figure 0.1. LED current does not follow setpoint after
fault disables controller

// reset the gains to their original wvalues

|void reset PID FX(SPidFX * pid) {
pid->pGain = plantPID FX setter.pGain; // pGain
pid-»iGain = plantPID FX setter.iGain; // iGain
pid-»dGain = plancPID FX setter.dGain; // dGain

}

f// hard set new PID values

|woid set_PID FX(FX16_16 pTerm, FX16_16 iTerm, FX16_16 dTerm) {
plantPID FX setter.pGain = pTerm; // pGain
plantPID FX secter.iGain
plantPID FX setter.dGain

}

iTerm; // iGain
dTerm; // dGain

Figure 0.2. Two new functions added to control.c, control.h

€ Figure 0.3. Fault detection and response code corrects
variable and keeps controller enabled without much change
in system behavior

// make a copy of the previous one during update
plantPID FX setter = *(pid);

Figure 0.4. make a copy of the current PID into
plantPID_FX_setter

x FAULT DESCRIPTION
Im—— T[]]| — |
: " . This fault changed the proportional, integral, and derivative
—— - terms for plantPID_FX. This caused the current to not be

properly controlled, hence the incorrect current seen in
Figure 0.1.

|FX16_16 UpdatePID FX(SPidFX * pid, FX16_l16€ error_FX, FX16_l€ position FX){
FXlé 16 pTerm, dTerm, iTerm, diff, ret_wal:

1f (plantPID FX setter.pGain != pid->pGain || plantPID FX setter.iGain != pid->iGain || plantPID FX setter.dGain != pid->dGain) reset_ PID FX(pid);
Figure 0.5. Check the current PID with plantPID_FX_setter in UpdatePID_FX. If wrong, reset the PID. Figure 0.4. occurs at the end of this routine.

Fault Management Approach

To fix the fault, an extra variable of type SPidFX was made called plantPID_FX_setter, which had the same initial values as plantPID_FX_setter (at
the top of control.c). The name was selected because that’s what the variable was; the ‘setter’, as it set the value of the PID controller and acted as
a backup. In essence, plantPID_FX was used to control the current values, and plantPID_FX_setter was used to control the plantPID_FX values.

During UpdatePID_FX, before calculating the current value, a conditional statement (seen in Figure 0.5.) checks each value of the plantPID_FX and
compares it to plantPID_FX_setter. If there are any differences, there was an improper change made to plantPID_FX. This calls the function
reset_PID_FX, which takes all the PID terms from plantPID_FX_setter and sets them to a SPidFX pointer pid, (in this case plantPID_FX). The

function returns, and since the PID changed the values at that address, the pointer values pid in the rest of the routine have changed. The function
proceeds as normal, properly fixing the fault.

To give the user the option to change the PID values without having it reset, another function is made called set_PID_FX (see Figure 0.2.), which
takes in the P, |, and D terms and sets plantPID_FX_setter to those values. Then next time UpdatePID_FX runs, plantPID_FX will automatically be
updated to plantPID_FX_setter values, effectively and properly changing the PID values.

Evaluation of Effectiveness

This approach is effective in the temporal and programming sense. There is a short period of time (~8ms, seen in Figure 0.3.) where the current
plateaus and fails to continue its default sawtooth pattern, since during that period is when the fault occurs and the MCU handles the fault.
Programmatically, any other file which includes control.h has the option of calling set_PID_FX to properly change the PID values, if need be. If

set_PID_FX was not an option, then the program would only allow for the initial PID values to ever be set during the course of the runtime, which is
very inflexible.

FAULT 1 - SET CURRENT HIGH

€ Figure 1.1. LED current does not follow setpoint
after fault disables controller

volatile int g set current=0;
int g_set_current copy=0;

Figure 1.2. A copy of g_set_current initialized at the
top of control.c

€& Figure 1.3. Fault detection and response code
corrects variable and keeps controller enabled without
much change in system behavior

ff make a copy of g_set_current
g Set current copy = g Set current;

Figure 1.4. make a copy of g_set_current into
g_set_current_copy

FAULT DESCRIPTION
This fault changed the variable g_set_current to 1000,
which is 1 ampere, overloading the LED, hence the
incorrect current seen in Figure 1.1.

void Update Set Current (void) {
S/ Ramp curent up and down
static wvolatile int t=0;

S oset g_set_current to copy if updated outside of this routine
g_set_current = (g_set current == g_set_current_copy) ? g_set_current : g_set_current cop¥;

Figure 1.5. Check if g_set_current equals g_set_current_copy in Update_Set_Current. If not, set them equal. Figure 1.4. occurs at the end of this
routine.

Fault Management Approach

After realizing that the only place where g_set_current was being changed was in the routine Update_Set_Current, it was appropriate to use this
function as the only location to evaluate whether or not g_set_current was changed outside of this routine. Using a similar approach seen in Fault
0, a copy is made called g_set_current_copy in control.c (Figure 1.2.) and is compared to g_set_current within Update_Set_Current (Figure 1.5.).
At the end of this routine (Figure 1.3.) the copy retains the value of g_set_current. Therefore, next time g_set_current is changed outside of
Update_Set_Current, the copy will catch this and quickly fix the value of g_set_current.

Evaluation of Effectiveness

This approach is effective in the temporal sense, where similar to Fault 0 there is a “8ms period where the set current and measure current
plateaus (seen in Figure 1.3.). Afterward, there is no current spike (as in Figure 1.1.), but the sawtooth pattern properly continues.

In the programming since, if the user/programmer would want the system to have a constant current then they must stop calling
Update_Set_Current to prevent the sawtooth pattern. As a result, g_set_current_copy is never used, so the user is free to change g_set_current
with no repercussions. This enables flexibility in programming while maintaining consistency with a controlling sequence such as the sawtooth in
Update_Set_Current.

FAULT 2 — SET CURRENT LOW

e o s e m—- ——
T €& Figure 2.1. LED current does not follow setpoint

after fault disables controller

Bl
e
P

o

VAVAYAYAVAWAVAVAVAVAVAY/ =

voalatile int g set current=0;
int g_set current copy=0;

Figure 2.2. A copy of g_set_current initialized at the
top of control.c

€ Figure 2.3. Fault detection and response code
corrects variable and keeps controller enabled without
much change in system behavior

ff make a copy of g_set_current
g_Set_Ccurrent copy¥ = §_Set_Current;

Figure 2.4. make a copy of g_set_current into
g_set_current_copy

FAULT DESCRIPTION
This fault changed the variable g_set_current to O,
which turns off the LED, hence the incorrect current
seen in Figure 2.1.

void Update Set Current (void) {
S Ramp curent up and down
static wolatile int t©=0;

ffo=set g_sSet_current to copy if updated outside of this routine
g_set current = (g _sSet current == g_set current copy} ? g_set current : g_set current copy:

Figure 2.5. Check if g_set_current equals g_set_current_copy in Update_Set_Current. If not, set them equal. Figure 2.4. occurs at the end of this
routine.

Fault Management Approach
Since Fault 1 did not consider only “high” currents, but rather any change made to g_set_current outside of Update_Set_Current, the same
approach fixes this low-current fault. See Fault 1 “Fault Management Approach” for more details regarding the fault management of this approach.

Evaluation of Effectiveness
Since both Fault 1 and 2 operate the same way, their effectiveness is the same. See Fault 1 “Evaluation of Effectiveness” for more details regarding
the effectiveness of this approach.

FAULT 3 — DISABLE ADC IRQ

LES B o

€& Figure 3.1. LED current does not follow setpoint
after fault disables controller. Can observe in digital
that ADC_IRQ goes low at the same time when the
current stays constant

volatile int g measured current;
int g measured current prev;
int g measured current temp;

Figure 3.2. A copy and temporary variable of
g_measured_current initialized at the top of control.c

€& Figure 3.3. Fault detection and response code
corrects variable and keeps controller enabled without
much change in system behavior

AAAAAAAAAAAAAMAAMA

— FAULT DESCRIPTION
= - This fault disabled the ADCO_IRQ handler, meaning no
new ADC values can be generated. This keeps
= == == == o ol Hem measured current constant, hence the incorrect
o updated current seen in Figure 3.1.
I 1 T 1 I 1 I —

Jvoid Update_Set Current (void) {
// Ramp curent up and down
static volatile int t=0;
wintlé_t res;

g if (g_measured current == g _measured current_prev) {

res = ADCO->R[0];

g_measured current_ temp = (res*1500)>>16;

if (g_measured current temp == g_measured current prev) NVIC EnableIRQ (ADCO_IRQn) ;
-}

g_measured current_prev = g_measured current;

Figure 3.4. A couple lines which determine whether or not to enable the ADCO_IRQ, explained in Fault Management Approach below

Fault Management Approach

To fix the fault, it first have to be understood what happens when the ADC IRQ is disabled. Control_HBLED is the only routine which pulls from the
ADC, and the only place where Control_HBLED is called is within the ADCO_IRQ handler. Therefore, Control_HBLED stops being called, resulting in
the current pattern in Figure 3.1. One can see that the blue trace still continues in the expected sawtooth pattern, meaning Update_Set_Current is
still being called, updating the set current in the proper sawtooth pattern. Therefore, we can use Update_Set_Current to check the ADC and see
whether or not Control_HBLED was called or not.

In Control_HBLED, g_measured_current is updated by reading from the ADC. So if we make a variable called g_measured_current_prev, and copy
g_measured_current in Update_Set_Current, then every time while the ADC is turned on g_measured_current will have the current current value
while g_measured_current_prev will hold the previous current value. These two values are compared in Update_Set_Current (since this routine is
called when ADC is turned off). If they are equal, it means that the ADC has not updated its value. Just to be sure that the ADC didn’t just generate
the same value, the ADC is pulled from again and stored into g_measured_current_temp (to prevent messing with calculations which use
g_measured_current and g_measured_current_prev). If this temporary variable and the previous current measurement are equal yet again,
NVIC_EnablelRQ is called to enable ADCO_IRQ. If they aren’t equal, it continues and stores the now-previous current value into
g_measured_current_prev.

Evaluation of Effectiveness

Temporally, this approach immediately handles the fault, with a similar 8ms window of current plateauing as seen in prior faults. Programmatically,
this approach will continue to enable the ADC IRQ as long as Update_Set_Current is called to run. Otherwise, the ADC will not be enabled. If the
user wishes to disable the ADC and run Update_Set_Current, this will not be possible unless they are aware of this added code. A simple Boolean
can be implemented in the if statement in Figure 3.4. which defines auto-enabling of the ADC to solve the problem in the previous sentence.

FAULT 4 - CHANGE MCU CLOCK

€& Figure 4.1. LED current follows setpoint but
increases frequency

char initial clockspeed;

lint main (woid) {
initial clockspeed = MCG->C6&;

Figure 4.2. A global copy of the initialized system clock
is made in main.c

€ Figure 4.3. Fault detection and response code
corrects variable and keeps controller enabled without
much change in system behavior

FAULT DESCRIPTION
This fault changed the clock speed of the system by
setting a new value to MCG->C6, hence the increased
rate of current pattern seen in Figure 4.1.

void Thread Buck Update Setpoint (void * arg) {
while (1) {
osDelay (THREAD BUS PERICD MS);

Update Set Current();
|if (initial clockspeed !'= MCG->C6) MCG->C6 = initial clockspeed;

}
}

Figure 4.4. Check during the thread Thread_Buck_Update_Setpoint if the value of MCG->C6 equals the initial clock speed value set in main (seen in
Figure 4.2.). If not, set them equal.

Fault Management Approach

The clock speed for the main clock of the KL25z uses Control Register 6 of the MCG (multipurpose clock generator). A char is initialized in main.c at
the first line of main to copy the initialized clock speed (initialized in Systemlnit in system_MKL25Z4.c) titled initial_clockspeed. The 4-most LSB’s
are important to consider since they control the multiplication factor to the reference clock frequency. MCG->C6 is initialized 0x40 (0 =
multiplication factor of 24), but then the fault changes it to Ox4A (A = multiplication factor of 34), hence increasing the clock speed as seen in Figure
4.1. To counter this, every time the thread Thread_Buck_Update_Setpoint is called, a check is made on the register 6 of MCG to ensure the clock

speed stays at the initialized value.

4-0 [VCO 0 Divider
VDIVO

Selects the amount to divide the VCO output of the PLL. The VDIV 0 bits establish the multiplication factor
(M) applied to the reference clock frequency. After the PLL is enabled (by setting either PLLCLKEN 0 or
PLLS), the VDIV 0 value must not be changed when LOCK 0 is zero.

Figure 4.5. Description of reference to MCG->C6 LSB’s

Evaluation of Effectiveness

This approach is effective immediately, since the thread Thread_Buck_Update_Setpoint has the highest priority (being osPriorityAboveNormal)
and is called at a high frequency to make small updates to the g_set_current via Update_Set_Current (as shown in previous faults). Meaning, since
this thread has the highest priority, it is very effective in catching the fault quickly. From a programming standpoint, the clock speed is unable to be
changed unless initial_clockspeed is changed with it. This is not ideal, but it prevents register 6 from being tampered with throughout the runtime.

LB

FAULT 5 - SLOW TPM

€& Figure 5.1. LED current does not follow setpoint after
fault disables controller

PWM Init (TPMO, PWM HELED CHANNEL, PWM PERIOD,

Figure 5.2. A line (not added) which is used to initialize
: the TPMO counter in control.c, Init_Buck_HBLED

b LTI D Eee L]
’x—\l 1 L T T T T T T T T T T T NI P AT T h
X LT T T T T T T T T T T TN T T

ooaX_[— 1 I —— 1
X

I 1 1 11 | 1 1 | 1 1 1 1 1
X
8l - J§ Il

W = wn e =Y = "= e =

e g EIRT ot

€ Figure 5.3. Fault detection and response code
corrects variable and keeps controller enabled without
much change in system behavior

AAANMAAMAANE

FAULT DESCRIPTION
This fault changed the value for TPM0->MOD, the
modulo register of the timer/PWM module, which
changes the duty cycle of the PWM, hence the incorrect
current seen in Figure 5.1.

volatile uintlé t tpm periods[3]:

wvold Thread Buck Update Setpoint (void * arg) {

- - N - .
while (1) { volid PWM_Init (TPFM_Type TFM, uint8_t chan

uint8 t pos polarity, uintd t prescaler

osDelay (THREAD BUS PERIOD MS);
Update_ Set_ Current|();

if (initial clockspeed != MCG->Ce) MCG-=Ce =
if (TPMO->MOD != tpm periods[0]) TPMO->MOD =

initial clockspeed
tpm_periods[0]:

{
J/turn on clock to TEM
switch ((int) TPM) |

- case (int) TPMO:
Figure 5.4. Check during the thread Thread_Buck_Update_Setpoint if the value of SIM-»>5CGCE |= SIM SCGCE_TPMO_MASK:
TPMO->MOD equals the initialized period for TPMO (seen in Figure 5.2. and 5.5.). If tpm _periods([0] = period:
not, set them equal. break;
case (int) TPM1:
SIM->SCGCE |= SIM SCGCE TPM1 MASK:
tpm_periods[l] = period;
break;
Figure 5.5. = case (int) TEM2:
Store values for each TPM in tpm_periods array in the switch statement.. SIM->5CGCE |= SIM SCGCE_TPM2 MASK;
tpm_periods[2] = period;
break;

Fault Management Approach

The timer/PWM module has three modules. The first of which is initialized from control.c (as seen in Figure 5.2.) and is the timer used to control
the speed of the HBLED updating process. TPMO is initialized in Init_Buck_HBLED = PWM_lInit by passing in the location of TPMO and its period.
Within PWM_Init, the initialized periods are stored in a uint16_t array tpm_periods (seen in Figure 5.5.) which is a volatile and external array
accessed in thread.c to check whether or not the current value in TPMO0->MOD equals the initialized TPM period (Figure 5.4.). The same thread as
the previous fault is used (thread Thread_Buck_Update_Setpoint) as this is the highest priority thread and will catch the fault during a very short
period of time.

Evaluation of Effectiveness

Similar to the previous fault, the highest priority thread Thread_Buck_Update_Setpoint is used. Though a new high priority thread could be made
to check both these faults, its effective in the way it works and how frequently this thread runs, allowing faults to be caught early. Therefore, the
placement of this statement is temporally efficient but programmatically inefficient. However, each TPM module has its period stored and each
TPM module can be initialized again to change the values in tpm_periods. So, unlike the previous fault, TPM0->MOD can be updated properly by
calling PWM_Init again. These two aspects make the addition of tpm_periods an overall more efficient and flexible design, which could further be
improved by making running a separate high priority thread solely for fault management.

FAULT 6 — LCD MUTEX
Vs je = e - Rang © Level 110,

€& Figure 6.1. LED current follows, but in digital
Th_Update_Screen stopped being services

Jint main (wvoid) {
Init_Debug Signals();
Init_RGB_LEDs():
Control RGB LEDs(0,0,1);
Sound Disable Amp();

LCD Init():

LCD Text Init(l):
LCD Erase();
Init_Buck HBLED():
|Tnic cop wDT():

Figure 6.2. Added function Init_COP_WDT to
initialize the watchdog timer in main.c

€ Figure 6.3. Fault detection and response code
resets system to properly start again

W

FAULT DESCRIPTION
This fault acquires the LCD mutex which blocks
LCD_Text_PrintStr_RC from running, halting
Thread_Update_Screen. Once the mutex is
returned, only then will the OS continue to run
T e the thread to properly update the screen

mmmmmmm

i HM\‘H ;H‘WH”\' i Wlll\l'l'um”m i

L w"mnM

T

Jwoid LCD Text_ PrintStr RC(uint®_t row, uintd_t

Jwoid Init COP_WDT (void) { BT_T pos;
SIM->COPC = SIM COPC_COPT(3) & ~5IM COPC_COPCLES_MASK & ~5IM COPC_COPW_MASE: pos.X = COL_TO_X(col)
} pos.Y = ROW_TC_Y(row };

g osMutexBAcquire (LCD mutex, osWaitForever):

// servicing the WDT
] woid Service COP WDT (void) { // service the WDT upon each screen update

SIM->SRVCOP = 0x55; | service cop WDT():
(STHTSRVEOR = fxess Figure 6.5. Service the WDT within
LCD_Test_PrintStr_RC

Figure 6.4. Setup for Init_COP_WDT and Service_COP_WODT functions in timers.c

Fault Management Approach

After realizing that LCD_mutex is only used within functions LCD_Fill_Rectangle and LCD_Text_PrintStr_RC, this meant that a thread will be
blocked upon the acquired mutex. After deciding to backtrack LCD_Text_PrintStr_RC (there were more instances of these function calls compared
to LCD_Fill_Rectangle, meaning greater priority), the hierarchy was found to stem from thread Thread_Update_Screen and follow:
Ul_Draw_Screen - Ul_Draw_Fields - LCD_Text_PrintStr_RC. If Thread_Update_Screen was being blocked, one of the most effective ways to
unblock it without polling to check whether or not the LCD_mutex has been acquired or not was to service a watchdog timer (WDT) within
LCD_Text_PrintStr_RC (Figure 6.5.) so once the thread it blocked for a sufficient amount of time, the WDT resets the system.

The WDT is initialized by a call from main (Figure 6.2.) to timers.c to initialize the KL25z COP WDT with the specifications show in Figure 6.4. To
service the WDT, a function in timers.c called Service_COP_WDT is created to change the value of SIM->SRVCOP to any value other than 0x55.
After some time of not being serviced, the WDT will then reset the system.

Evaluation of Effectiveness

Since the system is reset using the WDT, there is a loss in temporal efficiency. Th_Update_Screen in the digital scope oscillates between 62.5ms
high and 102.5ms low (duty cycle of ~38%) servicing the thread to update the LCD screen. Then in Figure 6.1. it can be seen that it stops being
serviced and stays high. After the WDT is implemented and serviced (Figure 6.5.), it can be seen in Figure 6.3. that there is a 1.04s period where the
system continues to run without the WDT resetting the system, roughly 6.3 cycles of Th_Update_Screen. Then it takes roughly 350ms for the
system to reset (Figure 6.3.) before the sawtooth pattern emerges again to properly run.

In most instances, the LCD_mutex would not be acquired outside of the Thread_Update_Screen thread, because it would be poor programming to
update the LCD outside of a thread dedicated to updating the screen. In addition, it would be absurd to poll and continuously check whether this
LCD_mutex value had been acquired or not, so a WDT is a good solution for handling this fault and any other non-responsive screen.

FAULT 7 — DISABLE ALL IRQS

Fe Contol
D srge

View Window
= source:

P vode: |Repested | Normal

== I 3) e
T

Tleet o [

gt = conduen: | e

L \ U
(.

("
Foaton: 1.2 v
Bee | SOmedv v
Average: [None -
overs: [off <
samples: (8152 ~
Rawe: (16w v
]

U Optone -
4 add Charnel -
[Gharmel 1 [
L1 charel 2 ©
= watn 1 PUES
offset: [0ma___
Renge: [0man
cip2

[a2 BIE
ofse: [0ma -
[Range: WmAfdn
a2

I man 3 B X

Py Project

Discovery2
SHZ10321ARZIAE
2020-11-22 11:26:27.596

il Iy Il I/ T
4. =, 0|, T.|Smpe Puke Protocl. = x
e X W T W R W
i K e —
ADC_RQ_Handier 0 X—l
i pdae Sereen ooaX__ [T M1 1
TPMI_IRQ Handier X
Th_Resd_TSAP_ADC X
Trouble I
Figure 7.1. All processes stop due to disabling of all IRQs
File Control View Window
B srgie P Mode: Repeated w | Mormal v Source: Digtal * condvon: | _f Risng v Leve: 110 m! I
Y = e P S o - e gy
M 9.72mA e b bea b baablaoald
MiPeriod: 1.4045 /0.7121516 Mz [74.49 %
M1 10465 E
il [‘\ K| \'| 'Yl 1 o F'l |H iy H Y ' 1y 1| [i\ ‘ I Ul | |
., - . To Smple Puse Protncol, e -
Hame Pin T 08¢ samples at 800 Hz | o
e X LN W T TR IR0 TR IS TEEUNA T (. ..
Control_HELED X
ADC_IRQ_Hander X
T pdate scsen seaX [LTI Lrrrrrhnrrrerrr__
TPMI_IRQ_Hander B X_1 1 1 I |
Th_Resd_TSAP_ADC X
Trouble iy
Figure 7.2. Fault detection and response code resets system to properly start again

Fault Management Approach
Since all IRQs are disabled, the thread fault injector happens to stay within a continuous while loop with osDelay(FAULT_PERIOD). The delay occurs
and the idle thread should run, but as seen in Figure 7.1. there is no idle thread signal. No other threads are called during this osDelay period, thus
returning to the same osDelay(FAULT_PERIOD) line within the Thread_Fault_Injector. Because of this, Thread_Update_Screen never runs, thus
never servicing the WDT within LCD_Test_PrintStr_RC. The WDT then decides to reset the system after the allotted time in the same way done in

Fault 6.

FAULT DESCRIPTION

This fault disables all IRQs, which prevents most aspects of the system from running

Refer to Figures 6.2., 6.4., and 6.5. for listings related to the WDT.

Evaluation of Effectiveness

[Time: o
Fosition: [1.2 -
Baser |somskv
aversge: | Nore ~
overs: [off <
Samples: 8192 -
Rote: Lokl
L]

& Optans. -
< Add Charmel -
O channel 1 o
[chernel 2 o
2 Mo 1 CIES
foffet: [0ma -
Rorge: [0wy~

cpz
A Mot 2 I
fofet: [20ma
Roge: [0 maidy ~

cnz
Math 3 X

e
SI210321AAZIAE

2020-11-22 11:20:38.399

The same temporal resolution for handling the fault results as in Fault 6: ~1.04s for the WDT to reset the system and ~350ms for the system to

reset.

FAULT 8 — STACK OVERFLOW

Eie Conrol View Window
P snge P Mode: Repeated * Normal * Souce: | Dgtal ~ Conden: _{ Rising o Level: 10mv 4

wima [mesdy Jc1[calma [1a]ma a1z sampes st 1.6kt | 200-11-22 11:27.02.608 [
T TT |||\“'||||\\\'|| || |\\\'I \‘ T TT 1T

o
H
2

<<

§
AR
HE
H

H
i
il

B
1.3 ®
z[8
e

Xx13s 285 038 0.2s a7s 125 L7s 225 275 32s

2 2R

e

=

]
H
<

i

!

2
3
<

i

4

. = [, T.[Sepe] Puse Protocdl = ®
L .
Control HELED
ADC_IRQ_Harder I
T peate Screen oosX_ [T M1 T T —
TR s
Th_Read TSAP_ADC
Trouble o i
My Project
Discaveryd
SRBAL
o At
Figure 8.1. All processes (threads) other than IRQ handlers stop due to infinite recursive loop
D snge P rn Mode: | Repoated v | homal v sewree: Ogtal = |condtions | I Risng Tleve: om I'
v [_memdy s [ca] va [142 13 |s152 samptes at 1.6tz | 2030-11-22 112815590 QLEE @@~
[eete To alon [oz mie s — - r —— . o .
oston: [130m
Base: Smay
F— -
o b] om: [
Sawples: [8192 -
Rate:; L&z hd
L]
‘i Optians. -
4 A Charnel -
! i 'y U] Ui | | Al 2 =
A R e AT A s I I==5 B
= WX
Offset: -20mA ~
Range: 20 ma fei v
b 1 ez
a2 BIX
! T o [om -
Roge: [-
e
*.=. 8.7 roa. = X
Name m T 4086 samples at 800 Bz | i
e 2E x gl Ipliml 0 (@ immiifiy _dpjipl iy 0 /(|
Control_HELED 10 h g
ADC_IRQ_Harder oE X
™ Upedste_Sereen maX] [M ML T T T nrrmnrnrnrnrrrrerrrrre
TPMI_IRQ_ Handler X
Th_Read_TSALP_ADC X
Troubke T [
Hy Project
s e

Figure 8.2. Fault detection and response code resets system to properly start again

FAULT DESCRIPTION

This fault decides to run an infinite recursive loop, setting the argument of the function to 1 greater than the previous to cause a stack overflow

Fault Management Approach

The routine Fault_Recursion_Test(n) within fault.c returns the value Fault_Recursion_Test(n + 1), thus causing an infinite recursive loop of

parameters within the stack. The stack will thus overflow. The only routines within the system capable of temporarily escaping this boundless hell
are the interrupt service routines, which are all serviced properly. After being serviced, the CPU is directed back toward the Fault_Recursion_Test,
never having time to run any of the threads within the RTOS. Because of this, Thread_Update_Screen never runs, thus never servicing the WDT

within LCD_Test_PrintStr_RC. The WDT then decides to reset the system after the allotted time in the same way done in Fault 6 & 7.

Refer to Figures 6.2., 6.4., and 6.5. for listings related to the WDT.

Evaluation of Effectiveness

The same temporal resolution for handling the fault results as in Faults 6 & 7: ~1.04s for the WDT to reset the system and ~350ms for the system to

reset.

FAULT 9 - FILL QUEUE

Fle Contol View Window =

e P o ode: Repeated v tomal v|sowce [Dgtal |conduon: | g Fllee: 1om i
Woma [Redy] c3[ca i [12] 3 5152 campies ot 1.6 otz | 020-11.22 1:2917.196 ercEt @ gr-
™ T Ill\\\‘ v TTTTT ‘ \\\| T T \|||\\\ T Slrme %
! Poston: [asms -
w i < e [swesgn
| average: [none. ~]
o i Overs.: off ~
i Samples: 8152 v
Rote: TowE v
T
. | % comns -
0 & Ak Crarrel L
[Charmel 1 o
Il [ez O
4 Math 1 uX
Offset: 20 mA ~
| fpees o -
F T |erz
. Fivanz IS
Offset: -20 mA hd
Rerge: [zomajn |
L G |er2
) | | s X
= ol L T I NI L il NI NI I L
xfw-1e5e -L1ss 0558 2158 0358 0858 1358 858 2358 2855 1358
>, - o T Smple Puse Frotocol, == K
Hame Pin T 08¢ samples at £00 H2 | i
e
Conteel_HELED. | |
ADC_IRQ_tander = | |
Th_Update_Screen o 4 X LT
TPMO_IRQ_Hander X | | |
Th_Read_TSAP_ACC X |
Trauble iy [
Hy Project
Discovery2
SRZI0T2AAZIAE
20201122 11:2%17.19%
x[-hiess Liss Fren FECPRNY 01z 0855 L1ss Less 235 2855 385

Figure 9.1. All processes (threads) other than IRQ handlers stop due to infinite loop

Eile Control View Window =|
- P rn tode: | Repeated bomd v Swsce Dgtal * lcondton: | [Risng Pt 10 i

vims [_Resdy Jci|ca]m [mams L8 btz | 20201122 11:30:08.729 arcE a@ly-
0 T T T T T T T T L0 e e e I e e T T Dme 0
Fostan: [a%0ms
b A s [somedw -
verage: [None v
Overs.: off ~
sampies: 3192 ~
Rake: 16k v
]
- = -
4 Add Channel -
___ | L1 Grarmel 1 u
i i i i i i { i
TR AT R AT YV Y TR IR Y I Gz o
Math 1 CIES
jofiset: 20 mA ~
franoe: [20may -
E 7 |nz
« i math 2 X
fotet: [20ma -
fpance: [omaiy
c2nz
Math 3
Xl -ress 155 - o 0ass 135 1 2 2. e
. =, [, T.|sepe puse prowci, = x
Marm in T 4096 samples at 800 Hz | U
e X gl Ipl @ 0 'm mi B (0p (0g 0 030 |
Contal reLED X1 | I
ADE_RQ_Hander X T 1 1 m m m | T
Th_Update_Screen oo 4X
TEMI_IRQ_Hander £ X I
Th_Resd_TSAP_ADC Ex LI
Trouble o i [1
My Project
Discoveryz
SH:210321AAZ3AE
2020-11-22 11:30:08.729
x[+h6ss 155 asss ass g [T ness 135z vass 235 2855 [ET

Figure 9.2. Fault detection and response code resets system to properly start again

FAULT DESCRIPTION
This fault decides to run an infinite loop in Fault_Fill_Queue where OS messages are continuously added to a queue
Fault Management Approach

Very similar to the previous fault (Fault 8), there is an infinite loop which uses up all the time of the RTOS preventing other threads from running. It
is evident how similar this fault is from the last by observing the digital signal between Figure 8.1. and Figure 9.1., where IRQs are still serviced but
threads are not. Because of this, Thread_Update_Screen never runs, thus never servicing the WDT within LCD_Test_PrintStr_RC. The WDT then
decides to reset the system after the allotted time in the same way done in Fault 6, 7, & 8.

Refer to Figures 6.2., 6.4., and 6.5. for listings related to the WDT.

Evaluation of Effectiveness

The same temporal resolution for handling the fault results as in Faults 6, 7, & 8: ~1.04s for the WDT to reset the system and ~350ms for the
system to reset.

FAULT 10 — DISABLE PERIPHERAL CLOCKS

Fle Control Wiew Window

Dl singe. [3 Mode: Repeated ~ Nomal v isoute: Digtal = |condon: | T Risng ~ Level: 110 m n
mima [_meady o1 |z [112]13] 192 samples at 164 | 20201122 11:30:49.550 ar-E Q@i
e T YT ARRN AR I R [T ™1 e o
Poston: [8s0ms
- | Base: 500 mejdv v
O
b 4 Qvers.: Off v
Samples: [g152 v
R T
T
4 Optione -
 Add Crarnel -
D] chamel 1 °
{ |
I OV Tyt TYVTY 1 L] Charmel 2 [
| [Math IES
otet: [20ma___ |
aroe:
L ez
ECTH wIX
joffser: 20 mA ~
Roge: [mav v
anz
) | —
o bl IFETITE AT A I N | T I P | T I TS IS I
xXliiess Lise IET) 05 o3 osse 1358 Lase [T 2e50 2388
. = ., T. Smple Puse Promeol, = «
Marme Pin | T 4086 samples ut 800 Bz | 5
1de X
Control D X
ADC_IRQ_Hander X
Th_Update_Screen o0 4 X | MM
0 1R parder X [T m
Th_Read_TSAP_ADC X
Troubie iy [
ml’mhﬂz
SHZI0IZAAZIAE
20201122 11:30:49.550
XFLess L5 FyTe FXTERNY [T e L35 Lass 3. 2a5e s
Figure 10.1. Processes halt due to disabling of peripheral clock
Fle Control Niew Window .
L] Prn Mode: Repeated v Noms v/ Dgtal w condon: | Reng Plieve: | 110m i
mima [_meady i]ea|ra (1213 8152 samples ot 1.6 ke | 2020-11-22 11:31:22.237 axriE Qgly-
AR R EAAR A v L e o A T L e o e -
T poston: [ss0ms -
i Base: 500 msjdv ~
wersge: oo~
Oves: o >
Samples: 8192 ~
A YT
]
. Optons. -
 Add Channel -
0] Crareel 1 ©
AR L R L S S R HH I T
IR I | T I I y STV TSty ey eyt TIYVUN T | Bomes s
b v ulX
Offset: D mA v
| fanor o -
E B (CTX]
Wotn2 0%
Offset: A ma ~
Range: 20 mAjdiv. v
c22.2
Rt
S AT TR PRI L TS VNI IS P i [P IR ST ! —
X[-Lesa s 085 s 035 085 1385 1853 2353 285 3.
4. o=, [, T[Sl Pse Protocd. = x
Hame Pin T 4036 samples at 800 Hz | &
1de X gl (I Tl Unipm i 0 Epilig 00 0p |
Control_HBLED X
ADC_IRQ_Handler X
Th_lipdate_Sereen 010 4 X
TEMO_IRQ_Hander x;'—] I J,—l
Th_feead_TSALP_AOC X
Trotie Iy I
"'hm‘l
Se210321AAI3AE
2020-11-22 113122237
Kehiess L5 252 EXTRY s [e s 13 2085 338s

Figure 10.2. Fault detection and response code resets system to properly start again

FAULT DESCRIPTION
This fault sets the register SIM->SCGC6, which is the clock gating control register used, to 0, disabling all clocks set by SCGC6

Fault Management Approach

SIM->SCGC6 is the 6t register used by SIM which connects the clock to the following peripherals: TMP0-2, ADCO, DACO, PIT, DMAMUYX, and FTF.
The 29t bit defines RTC access, which enables or disables access and interrupts. Because the entire register was set to 0, all the peripherals listed
above cut their connections to the clock and RTC access is disabled. This means that TMPO, ADCO, and other interrupts used in this project are
unable to be serviced. This can be seen in Figure 10.1. (contrast to Figures 8.1. and 9.1.) where interrupts are all low. And since the clock prevents
some essential peripherals from running, the program appears to get stuck on an osDelay call right after the switch condition in Test Fault. Because
of this, Thread_Update_Screen never runs, thus never servicing the WDT within LCD_Test_PrintStr_RC. The WDT then decides to reset the system
after the allotted time in the same way done in Fault 6, 7, 8, & 9. Refer to Figures 6.2., 6.4., and 6.5. for listings related to the WDT.

Evaluation of Effectiveness

The same temporal resolution for handling the fault results as in Faults 6, 7, 8, & 9: ~1.04s for the WDT to reset the system and ~350ms for the
system to reset.

FAULT 11 - OS KERNEL LOCK

Ele Control View Window :
D singe. [Mode: Repeated v Nermal v Sowce: Digtal = |condaon: | Risng Level: 10 mw n

o [_meady o1 cz| 1 [ma]ma]aisz sancies at 15k | 0201122 123212333 QrcE a@v-
e : RRRARBRARS RRM [T EARARARARI R [T .
| | .~
| = Base: 500 mefdv
PO
. -
Samples: 8192 v
A T
]
© opies =
4 Add Chanrel -
[Chernel 1 u
[Chernei 2 u
-] math 1 IES
Offset: -2 mA w
Rorce: [0majay -
2
Math 2 FIES
] Offset: 20 mA v
) Range: |20 majv
“or E| €2
] Math 3 ulX
., ==, . T. Smpe Puse Protocd. = ®
Harme Pin T 4096 samples at 800 Hz | ul
. TEx TIN LN RN THE | W W
Conlrol_HBLED X 1
ADC_IRQ Handler X 1
Th_Update_Screen oo 4%
TEMO_RQ_Hender X I L | |
Th_Read TSAP_ADC X
Trouble T
v
seBTA
i T
Figure 11.1. All threads locked while rest of the system continues
Ede Control View Wndow m
Pl srge [Mode: |Repeated = nomal = Sowee: Dgeal = Cordbo: [mmng Level: 10m i
Vims [Remdy 1 [C2] 11 [142 [13 |o152 sampes ot 1655 | 2020-11.22 11:32:47.052 ar-=a@y-
a0 TT] T T T T [TTT LI B B L B e e T L B e e LI B L e Hrme 5
! N rr—
F { I o B StOmafdy
o -
Overs.: Off -
Samples: | 8192 ~
Rate: L6 ke -
]
. 3 Options -
& Add Chamnel -
RV S SO M. .] Gharnel 1 u
AR A LD TN N CTEEYTY YUYy TN B 5
Math 1 FIES
ot [t |
Range: WmALy v
2
Math 2 CIES
F T fofmer [20ma v
Range: WmALY v
a2
. ‘ ‘ | | Math 3 IS
4. = [, 7. Smpe Puke Protomi. &= x
e X gk Wy (i 110y igw (g ly 00y Onl Nyl 0§ i |
Control_HBLED X
ADC_IRQ Handier bio shd
Th_Update_Sareen 010 4 X LM rm _rmn rm rn rn r.rn’ .’
TPMO_IRQ_Hander X | |
Th_Read_TSAP_ADC X
Trouble T
My Project

0321AAZIAE
2020-11-22 11:32:47.052
X|v65e L1855 0655 FECEINY 0355 .55 1355 Lass 235 2855 3.35¢

Figure 11.2. Fault detection and response code resets system to properly start again

FAULT DESCRIPTION
This fault calls osKernelLock at a forbidden location with no osKernelUnlock to restore the RTOS

Fault Management Approach

The function osKernelLock essentially locks the RTOS kernel, preventing all tasks and threads from executing. When improperly called with no
osKernelUnlock, the system has nothing to do, except service IRQs, since this system has already executed main. Normally, the OS would continue
running forever. But due to the locking of the kernel, no threads are accessed. Because of this, Thread_Update_Screen never runs, thus never
servicing the WDT within LCD_Test_PrintStr_RC. The WDT then decides to reset the system after the allotted time in the same way done in Fault 6,
7,8,9, &10.

Refer to Figures 6.2., 6.4., and 6.5. for listings related to the WDT.

Evaluation of Effectiveness

The same temporal resolution for handling the fault results as in Faults 6, 7, 8, 9, & 10: ~1.04s for the WDT to reset the system and ~350ms for the
system to reset.

FAULT 12 — HIGH PRIORITY THREAD

File Comrol View Window
D sroe »an T — = [Mormal ®|souca: [ogia connon: | [g Tret: 10m 1

v, [_memdy s [ca) ma [11a 1] si52 sompies ot .6 ki | 20301322 11332075 arct e @lr-
T T 1T |||\‘\||||\\"|| || |\\\'I \‘ T LI i e e o
i [sma
Bass: SO msfdy
-
L B
R e
]
&3 Options @
& Add Channel -
___ 1 | O channet 1 £
NIVIRIR NI TR RN, £ cramnel 2 03
| A math 1 u X
ET—
: [maEy -
cuzz
-0 Math 2 u X
FTTS
;| omade v
b €y
I I . p e || L . S N ! L T
G, == [, T. Smpe Fuse Protocol. = x
Ide
Control HELED
706 R e
| Sore— XL M. rn r.rni
TR s —
Th_Read TS|LP_ADC
Trouble |
1y proect
Discaveryl
SRBAL
o T
Figure 12.1. Most processes stop due to introduction of new higher priority thread
Eile Control Veew Window o
D s | 2 Mode: Repested v [Normd ¥ Sorce: Digtal = |condson: | Rsng Level: 10w n
T W) T) T e ancE e @y
il ; L e i RE R .
3 | i Poaton: B0 ms v
w E + - ses SCOmsfdy
e | —
L B -
e [roe]
T
& Optiors. M
“# Add Charnel
] Chanel 1 1]
|
Wyl] el 2 ©
[Math 1 S
i S ET
cuzz
") Math 2 kS
o i b [v
e
cazz
| | | H srre—r
>, - . T+ Smgle Puse Protocd, w= ®
Narme Pin T 4096 samples ae 800 Bz | s
e ; gl 0y |\ 0y gy g (g u0y U0y By (0§ ||
Conrol_HELED X [0
ADC_IRQ_Handier X I
Th_Uindate_Sereen oo 4 X' LM rn rn rnrrrmnrr rr
TPM0_IRQ_Handler
R TP
Touie —]
My Project
st
o ey

Figure 12.2. Fault detection and response code resets system to properly start again

FAULT DESCRIPTION
This fault manifests a new higher priority thread whose only task is to toggle the DBG_FAULT signal

Fault Management Approach

A new thread of priority osPriorityRealtime (higher than our previous highest thread being priority osPriorityAboveNormal) is established and runs
an infinite while loop toggling the DGB_FAULT signal, seen in the digital outputs of Figures 12.1. and 12.2. (though in Figure 12.1. it’s much lower
resolution). The thread consumes the RTOS, never allowing any other threads to run (but allowing for normal IRQs, as seen in Figure 12.1.).
Because of this, Thread_Update_Screen never runs, thus never servicing the WDT within LCD_Test_PrintStr_RC. The WDT then decides to reset
the system after the allotted time in the same way done in Fault 6, 7, 8,9, 10 & 11.

Refer to Figures 6.2., 6.4., and 6.5. for listings related to the WDT.

Evaluation of Effectiveness

The same temporal resolution for handling the fault results as in Faults 6, 7, 8,9, 10, & 11: ~1.04s for the WDT to reset the system and ~350ms for
the system to reset.

EXTRA CREDIT

e Properly and efficiently handled all of the 13 faults (0 through 12) out of the 10 required for ECE 560
e Same solution used to handle Faults 1 & 2

e Same solution used to handle Faults 6, 7, 8, 9, 10, 11, & 12

e Additional features of some solutions to add flexibility in further software development

RETROSPECTIVE

One of the key lessons | learned is how incredibly useful the watchdog timer can be in the dire most situations. It is best to service the watchdog
timer on a thread or routine that should consistently be called throughout the runtime of the system, so that when the system breaks/crashes/etc.,
the watchdog timer is able to catch this and reset the system. It was not intended for the watchdog timer to solve 6 of the 13 faults, but it ended
up being a very valuable resource. One thing | would do different next time is inhibit myself from using the watchdog timer for faults that can be
solved otherwise. This would lead to a low-level analysis of the software as well as hardware architecture to understand precisely what is going
wrong and how it can be caught, before getting out of hand. And this would result in a greater understanding of the KL25z as well as embedded
systems as a whole.

I would not change the project/course material to make it more effective and feasible, because | already think the way the information was present
it already was effective and feasible. However, | would alter the project/course material to give students more hands-on development with the
KL25z as well as more time.

Rather than the premise of this project being “there are faults injected, handle them”, students should work on developing some end-of-semester
project (similar to ECE 306) with prior specifications of making the software fault proof. What | mean, is giving the assignment “program X in a way
where unsolicited changes of control variables A, B, and C are managed as well as managing the following common errors: stack overflow, filled
queue, disable all IRQs, etc.”

This would not only allow students to explore the KL25z more in developing this (simple) program “X”, but also they would have to develop their
own fault testbench. If their program is clean, then they will have no problem implemented these fault handlers. If their program consists of
spaghetti code, they will have a difficult time. And this project was quite straight forward because the code provided is extremely clean.

APPENDIX

Oscilloscope figures for Faults 0 — 6 are shown below, as an additional reference (if needed) due to their small scales on the pages. Faults 7 — 12 are not shown since these are already legible.

Eile Control View Window

|N Single H’ Run |Mode: |Repeated | [Normal v |source: | pigital ~ |conditon: | " Rising i =V 10 my i
Mima [__Ready | ci[ca|m1[m2[M3]8192 samples at 16 ktiz | 2020-11-21 14:26:02.828 ortE 8 -
120 L s e . B B A & Tme N
3 Position: 28.4ms ~
100 Base: 50 ms/div ~
3 E Average: | None ~
10 =
- : vers Off ~
£ i Samples: | 8192 ~
Rate: 16kHz ~
0 1]
\ i
J h “Qj Options -
)
3 “* Add Channel -
. f; [channel 1
0
e
<0
0
3 Math 3
50 cov b P b b b e b b b b e b b e P b b v b b b by b ICYEd
[x[+-221.6ms 1716 ms -121,6ms 7L6ms 216ms 28.4ms 78.4ms 128.4ms 178.4ms 228.4ms
o, == _ [_ T. Smple Pulse Protocol, = K
Name Pin T 4096 samples at 8 kHz |
o x| e T P W 111177 IO S
Control_HBLED ™
ADC_IRQ_Handler N X
Th_Update_Screen “ oo 4 X | | | |
TPMO_IRGQ_Handler : 34
Th_Read_TS/LP_ADC & x
Trouble 8 I n
My Project
Discovery2
SH:210321AA23AE
: 2020-11-21 14:26:02.828
[x|*t216ms 1716ms -1216ms 716ms 216ms A 28.4ms 78.4ms 128.4ms 178.4ms 228.4ms 278,40

Figure 0.1.

N Single

’ Run

B
[T

4‘)‘
i
1®
T

III'l\\I\

T

Y -
Time [
Position: 28.4ms ~
Base: 50 msdiv ~
Average: MNone ~
Overs.: Off bl
Samples: 8192 ~
Rate: 16 kHz o
[}
-ﬁ' Options -

— Add Channel
[channel 1

Pl

[1 channel 2

Math 1 ©
Offset: -20 mA

DA e

II

Range: 20 mAfdiv ~
C1/2.2

1

Math 2
Offset: -20 mA bl

Range: 20 mafdiv ~

c2/2.2

Math 3][X

Mode: Repeated
Mima [Ready | c1[c2] 11 [m2[M3]5192 samples at 15
120 L O B R B B
100
80
n I
60 f\l
40 \
0
[}
-20
-40
-60
-80 ENERENI R R B L1
X |v|-221.6ms -1716ms
¢, == _ [l _ T. Smple Puse Protocol, =
Mame Pin T 4096 samples at & kHz |
e TEx TN
Control_HBLED X

ADC_IRQ_Handler
Th_Update_Screen

TPMO_IRQ_Handler X

Th_Read_TS/LP_ADC X

Trouble 1 J-
X|r'21.6ms -171.6ms

My Project
Discovery2
SN:210321AA23AE
2020-11-21 14:24:47.979

278.4m

File Control View Window

N Single . Run Mode: Repeated * || Normal - Source: |Digital
M1mA

120

100

80

&0

40

o

-80

X \v -221.65ms -171.65ms -121.65ms

¢, == " T.|Smple Puse Protocol, =

110 mV

Ready | c1|c2|m1[m2]m3]8192 samples at 16 kiiz | 2020-11-21 19:25:37.085
L I B B T

iy
4|)‘
—r

- Overs.: Off

MName Pin T 4096 samples at & kHz |

1de g X I

Control_HBLED ; X

—ummrmnr

ADC_IRQ_Handler

Th_Update_Screen

TPMO_IRQ_Handler

Th_Read_TS/LP_ADC

Trouble]

X|r2185ms -171.65 ms -121,

65 ms -71.65ms

Figure 1.1.

<

Time
Position: 28.35ms
Base: 50 ms/fdiv

£

Average: Mone

4

<

Samples: 8192

4

Rate: 16 kHz ~
I}

& Options -
4 Add Channel A
[1 channel 1 [
[1 channel 2 [
Math 1 [T
Offset: -20 mA

II

Range: 20 mA/div ~
c1/2.2

|

[] Math 2 [ES

Range: 20 mA/div ~

c2/2.2

[1 Math 3 AES

My Project
Discovery2
SN:210321AA23AE
2020-11-21 19:25:37.085

Eile Control Yiew Window
N Single . Run Mode: Repeated ~ | Normal ~ |Source: Digital ~ |Condition: _FR\sing - Level: 110 mV
mima [Ready | cifca|mi M2 M3]8192 samples at 16 kiz | 2020-11-21 19:26:04,505 Qi E @G-
120 L | T T T T 1T | 1T T T T T T T T . J | T T T T T T T T T T T T | T T T T ‘ T T 3
£ 1 Position: 28.35ms hd
100 Baze: 50 ms/fdiv ~
E b Awverage: | Nonge ~
80 Overs.: Off ~
E 1 Samples: 3192 -
) Rate: 16 kHz v
) -
g -
f&: Options -
40
b r‘l" "f] 4 Add Channel -
Channel 1 (¥
20 | f O
E .\ E [Channel 2 [
0 FIES
orem:
-20
c1/2.2
40 i Math 2 [ES
ot
] E Range: __zu mA/div ~
0 c2/2.2
' '
-80 1111 | | | | I 1111 1 1 1 1 | 111 111 | I 1 1 11 1 1 1 1111 |
X \' -221.65 ms -171.65ms -121.65ms -71.65ms -21.65ms 28.35ms 78.35ms 128.35ms 178.35ms 228.35ms 278.35n
o, == [T.|Smple Puse Protocol. &= K
Mame Pin T 4096 samples at & kHz | L5
TEXL_ M (LT B T 1L — I
Control_HBLED X
ADC_IRQ_Handler X
Th_Update_Screen oo 4 X | |
TPMO_IRQ_Handler g X
Th_Read_TS/LP_ADC X
Trouble N J—
My Project
Discovery2
SN:210321AA23AE
: 2020-11-21 19:26:04.505
X |'21.65 ms -171.65ms -121.65ms -71.65ms -21.65ms 28.35ms 78.35ms 128.35ms 178.35ms 228.35ms 278.35r1

Figure 1.3.

File Control View Window

N Single ’ Run Mode: Repeated ~ | Normal |Source: Digital ~ |Condition: _rRismg = Level: 110 mv
Mima | Ready | c1[c2|m1[m2 |13 8192 samples at 18 kkz | 2020-11-21 19:28:33.338 astE @@y
120 \I\I‘III\I\II'I\I\\I\III\I T T \I\I""IIIII\I\\II\ T rorTr T T I\I\I‘Illlll\l\lll
100
a0
B0 F fl f
. f \ / !
. Vi ;
0
-20
-a0
-60
-80 I ‘ I I - | | I - I I I | | I I I 11 1 1 1 | 1 1 1 1 1 1| 1111
X " -221.65ms -171.65ms -121.65ms -71.65ms -21.65ms 28.35ms 78.35ms 128.35ms 178.35ms 228.35ms 278.35n
L ; -
G, = + T~ Simple Pulsse Protocal, &= K
Mame Pin T 409¢ samples at & kHz | L
I TEx M ML [UL T L — LT 1L —
Control_HBLED
ADC_IRQ_Handler
Th_Update_Screen | |
TPMO_IRGQ_Handler Il |
Th_Read_TS/LP_ADC
Trouble "
X |*21.65ms -171.65ms -121.65ms -71.65ms -21.65ms ‘ 28.35ms 78.35ms 128.35ms 178.35ms 228.35ms 278.351

Figure 2.1.

-
Time LY
Position: 28.35ms bl
Base: 50 ms/div ~
Average: MNone ~
Overs.: off e
Samples: | 8192 ~
Rate: 16 kHz ~
f

“4’3 Options -
~ Add Channel -
[channel 1 L5
[] channel 2 [
Math 1 FES
e
C12.2

Math 2 IS

Range: 20 maA/div ~

C2j2.2

[| Math 3 X

My Project
Discovery2
SH:210321AA23AE
2020-11-21 19:28:33.396

File

Control View Window

B single P> Run Mode: Repeated ~ | Normal ~ |Source: _f rising © Level: 110 m¥ 1
Mima [__Ready |ci1[c2|m1[m2[m3]s192samplesa 1-2119:25:14.513 orEE 8 [y~
120 \I\\l\lll T T T T \Illl\l\ T III'l\\I\ T I\Illl\l\ T I\l\\l\ [Time &
E E Posiion: | 28.35ms v
100 Base: 50 msdiv ~
F 4 Average: MNone ~
Overs.: w
a0 Off
E E Samples: 8192 ~
Rate: 16 kHz o
U A
(]
-ﬁ' Options -
40 5
b ’(f 3 = Add Channel v
Channel 1 U
. £ ¥ O
E 1 [channel 2 G
0 Math 1 B|X
ore:
Range: __zn ma fdiv ~
-20
C1/2.2
40 i Math 2 X
ot
3 E Range: Wmafdv v
e c2/2.2
l Math 3 FES
80 I 1111 | 11 I - I - I - 1 | I - 1 1| L 1|
X \V -221.65ms -171.65ms -121.65ms -7L65ms -21.65ms 28.35ms 178.35ms 228.35ms 278.35n
L S
S rle —o + T+ | Simple | Pulse Protocol, &= x
Mame Pin T 4096 samples at & kHz | L
TE X I NN [— I {17771 TR — E)
Control_HBLED ; X
ADC_IRQ_Handler & 5 X
Th_Update_Screen oo 4 X
TPMO_IRQ_Handler B x
Th_Read_TS/LP_ADC X
Trouble i n
My Project
Discovery2
SN:210321AA23AE
2020-11-21 19:29:14.613
X|r2165ms -171.65ms -71.65ms -21.65ms ‘ 28.35ms 178.35ms 228.35ms 278.351

N Single ’ Run

Mode: Repeated

M1mA Ready
L

|1 [c2|m1 [m2]m3 8192 samples at 8 kiiz | 2020-11-22 13:10:19.818
L L R

F-J
l

120 !

100

_‘)‘
1®

— T

80

AAAAA

AVAY,
VoV

IVAVA
\

Time L5
Position: 90 ms W
Base: 100 msfdiv =~
Average: None v
Overs.: off el
Samples: | 8192 hd
1 Rate: akHz b
[]
‘-Q'_z Options -

~* Add Channel

4

Channel 1 ¥
20 D
E v V V [] channel 2 [+
0 Math 1 &|X
oo
-20
C12.2
0 i Math 2 i
Offset: _20 mA
-60
C2/2.2
E | | Math 3 Ao
-80 I IIII|I\I\
X|* 410ms 310 ms 210 ms 590 ms
L -
e, = . T~ Simple Pulse Protocol, <= K
Mame T 40%€ samples at 4 kHz |
TEx WEENUTLIN T NENUNTTL T REUELTT WUETLIL T U T U
Control_HBLED
ADC_IRQ_Handler
Th_Update_Screen
TPMO_IRQ_Handler
Th_Read_TS/LP_ADC
Trouble
My Project
Discovery2
SN:210321AA23AE
i 2020-11-22 13:10:19.818
X w410 ms -310ms -210 ms

590 m:

File Control Miew Window
N5|ng\e . Run Mode: Repeated ~ | Normal ~ Source: | Digital ~ Condition: | _{ Rising ~ |Level: 120 mV 1
M1ma Ready |2 [c2|m1 |12 M3 [8192 samples at 5 kiz | 2020-11-22 13:11:24.025 st E e @lly -
120 \Illl\\ll\l\l‘l\l\\lllI\II\IIII\II'III\\II \II\II\IIII\II\IIII\II\IIIl\\III\IIl\I\I [Time [
3 1 Position: 90 ms ~
100 Base: 100 ms/div =~
£ k| Average: None ~
O = ~
- Vers. Off
- E Samples: 5192 v
& 1 i I i I 1 i I 1 k L At 8 khz >
[]
{ & Options -
40
l\/\/\ \/\/\/\l\ \/\/ \/\/\l\/\/\/\/‘\/\/\}\f\/\/\/\f_‘l‘AddChamEI :
Channel 1 i)
20 D
E =4 [channel 2 ©
] [Math 1 4
e
Range: __20 mA/div hl
-20
cif2.2
-4 [] Math 2 |4
Offset: -20mA al
3 E| Range: 20 mA(div ~
-60
c2f2.2
3 Math 3 S
-80 \Illl\\ll\l\lI\I\\IIII\II\III\II\III\\III\II\I I S N A |
X " -410 ms -310ms -210 ms -110 ms -10 ms 90 ms 190 ms 290 ms 390ms 430 ms 590 ms
L
., = - T+ Smple Pulse Protocol, = ';(
Mame Pin T 4096 samples at 4 kHz | &
OEX T WMLLLUMINEOE T TTTLCUANTAN T UATUNMAET ML R WLR (TSN UL
Control_HBLED 5
ADC_IRQ_Handler
Th_Update_Screen
TPMO_IRQ_Handler
Th_Read_TS/LP_ADC
Trouble
My Project
Discovery2
SN:210321AA23AE
2020-11-22 13:11:24.025
X|v40ms -310ms -210 ms -110 ms

S0 ms

Figure 3.3.

190 ms

290 ms

390 ms

490 ms

590 me

File
N Single

M1mA
120

100

80

40

20

-20

-0

-60

-80

X | v|-205ms

-« .

Ready | c1|c2| 1 [M2 |13 8192 samples at 16 kiz | 2020-1
I L R B

8| ¥ -
T

=

Time [
Position: 45 ms b
Base: 50 ms/div ~
Average: MNone ~
Qvers.: Off ~
Samples: | 8192 ~
j Rate: 16 kHz hd
[}
{}j Options -

< Add Channel
[channel 1
[channel 2

1

e &

Math 1 ©
Offset: -20mA

II

Range: 20 mAfdiv ~
c12.2

i Math 2 kS

Offset: -20 mA ~

Range: _ZD mA fdiv v

C2f2.2

Math 3 kS

My Project
Discovel
SN:210321AA23AE
2020-11-22 13:25:13.287

X |*205ms

295 me

File Control View Window

N Single ’ Run Mode:

Repeated

~ | Normal ~ |Source:

Digital = Condion: | _{ Rising = Level: 120 mv 1
Mima [Ready | c1[c2|mi1[m2[m3 8152 samples at 16 khz | 2020-11-22 13:26:05.741 asEE & [y-
120 \I\Illl\l\l\\l\lll\l\l|||| T T T T T [L L 1T I\III‘II\IIII‘I\I\ [Time &
E 1 Position: | 45 ms ~
100 . Base! 50 msfdiv. = v
E E Average: | None ~
Overs.: v
80 off
-] Samples: | 5192 hl
Rate: 16 kHz ~
) A
¥ / y -
h j t Lt Options -
40 “d
‘ﬂ‘ 4 Add Channel -
[1 channel 1 [
0 \'
E] [channel 2 [
] Math 1 k4
ot
Range: 20 mafdiv ~
-20
cif22
a0 i Math 2 [FIES
o
E 1 Range: 20mAfdv v
0 c2/2.2
Math 3 X
-80 [| | I | I 1 | [| I | | L1 L1 I 1 I L1 | | 1 | I | I | | L1 I
X " -205ms -155ms -105ms -55ms -5ms 45ms 95ms 145ms 195ms 245ms 295ms
., = +« T+ Simple | Pulse Protocol, = }(
Mame Pin T 409 samples at & kHz | &
CEEXWL__ T T/ — L U T LRI L —
Control_HBLED § X [
ADC_IRQ_Handler ' X | |
Th_Update_Screen pio 4 X | |
TPMO_IRQ_Handler x |
Th_Read_TS/LP_ADC x
Trouble J— n
My Project
Discovery2
SN:210321AA23AE
: 2020-11-22 13:26:05.741
X|*[205ms -155ms -105ms -55ms -5 rr‘ 45ms 95ms 145ms 195 ms 245ms 295 me

Figure 4.3.

File

N Single
M1mA
120

100

80

40

o

-20

-60

-30

Control

’ Run

View Window

Mode:

Repeated

¥ ||Normal

* |Source: Digital

= Condition:

J_ Rising

»

=

Ready |1 |c2|m1[mz2[m3]a1s2
L I B Y B O

samples at 16 kHz | 2020-11-22 15:58:27.191
| T T

A A

—
— T

a,
T

&Y
T

/ N/
AV

X | v|-205ms

*.=_ N.

-155ms

T . Smple Pulse Protocol, =

Mame Pin T 4096 samples at 3 kHz | s
fde 8o 724 T N = S B 2 -
Control_HBLED 1l 111 8 1 N N N A A NN N NN AR AN A
ADC_IRQ_Hendier 1l LUORIr ot Tt vy (onenerr UCimett (ovmnert (oerimet Ceermnit it

Th_Update_Screen
TPMO_IRQ_Handler
Th_Read_TS/LP_ADC

Trouble

X |*205ms

-155ms

-105ms

-55ms

45ms

Figure 5.1.

95ms

145ms

135 ms

245ms

295 me

-
Time [
Position: 45ms il
Base: 50 ms/div ~
Average: |None Al
Qvers.: off ~
Samples: 8192 ~
Rate: 16 kHz ~
[]
ﬂ Options -

1

- Add Channel

[channel 1 &
[channel 2 &
Math 1 [k
o
ci2.2

Math 2

1

B

ot
Range: 20 mA/div ~
c2/2.2
Math 3 [k
My Project
Discovery2
SN:210321AA23AE

2020-11-22 15:58:27.191

File Control Miew Window
N5|ng\e . Run Mode: Repeated ~ | Normal ~ Source: | Digital ~ Condition: | _{ Rising ~ |Level: 120 mV
Mima | Ready |c1[ca|ma[mz]m3[a192 samples st 16 kiiz | 2020-11-22 15:55:02.630
120 \Illl\\ll\l\l‘l\l\\III\II\ L. AL T 1T T T T T7TT T L L I\Illl\\lll\
3] Position: 45 ms ~
100 Base: 50 ms/div ~
F 4 Average: None w
Qvers.: ~
0 off
- E Samples: 5192 v
" " N ; Rate: 16 kHz ~
[]
j th & Options -
40
£ 1%] 4 Add Channel -
Channel 1 i)
20 \' D
E 3 3 [channel 2 ©
] [Math 1 4
e
Range: __20 mA/div hl
-20
c1/2.2
40 Math 2 4
Offset: -20 mA al
3 E| Range: 20 mA(div ~
-60
c2/2.2
Math 3 S
-80 \Illl\\ll\l\ll L 11 | 1 L1 L 11 L1 I I | 1 I | L1 I I Y I o |
X " -205ms -155ms -105ms -55ms -5ms 45ms 95ms 145ms 195ms 245ms 295ms
L
., = - T+ Smple Pulse Protocol, = ';(
Mame Pin T 4096 samples at 8 kHz | &
| TR TN W — 10 g a—l |
Control_HBLED &)(
ADC_IRQ_Handler
Th_Update_Screen I
TPMO_IRQ_Handler [HTTTTTTTT]
Th_Read_TS/LP_ADC
Trouble ”
My Project
Discovery2
SN:210321AA23AE
i 2020-11-22 15:56:02.630
X |*205ms -155ms -105ms -55ms

45ms

Figure 5.3.

95ms

145ms

135 ms

245ms

295 me

File Control View Windo

|N Single H’ Run |Mude: ‘Repeahed - H Mormal - |Suurce: |Digita| - |Condih’un: _f rising = Level: 110 mV 1

Mima | Ready |c1[c2|m1[m2[m3 8192 samples at 1.6 kiz | 2020-11-22 11:22:04.847 ot (v =

120 Y B B B B & Time =
Position: 1.2s ~

100 Base: s00msfdiv
Average: None ~

&0 Overs.: Off ~
Samples: | 8192 hd
Rate: LEkHz hd

[channel 1
[1 channel 2

B0
[]
: “Qj Options -
40 ¢
f H ~ Add Channel -

Range: 20 mA/div ~
-20

a0 Math 2 Ed
Offset: -20 mi ~

Math 3 [®BX]
50 o v b b b b b b b e b b b v b by by
[x[=13s 0.8s 0.3s 0.2s 0.7s 125 175 225 275 325 37s
,

¢, == | T, Simple Pulse Protocol, &=

Mame Pin T 409€ samples at 800 Hz |
T T /N NLAT TR O e S T O A
Control_HBLED N .x
ADC_IRQ_Handler N X

Th_Update_Screen

.

TPMO_IRQ_Handler

Th_Read_TS/LP_ADC

Trouble I
My Project
Discovery2
SN:210321AA23AE
i 2020-11-22 11:22:04.847
-1.3s 0.8s 0.3s ‘ 0.2s 0.7s 12s 1.7s 2.2s 2.7s 3.2s 3.7s

Figure 6.1.

File Control Vie

B sl B> Run Mode: |Repeated ~ |Normal ~|source: | Digital ~ |condition: | [~ Risina “ieve: [110my 1
Mima [meady |ci[cz|mi[m2[m3]s192 samples at 1.6 ktz | 20201122 11:17:05.618 o~ EE] -
120 L I L B B & Time &
E 1 Posiion: | 1.2 ~
100 Base: 500 msfdiv =~
F 4 Average: MNone ~
Overs.: w
a0 Off
M2: 60.56 mA Samples: [g8192 ~
3 M1: 59.83 mA E
, Rate: 1.6 kHz -
60 1
l ﬁj Options -
40
— Add Channel -
[channel 1
0 -
E 1 [channel 2
a Math 1
Offset: -20 mA ~
Range: 20 mAfdiv ~
-20
0 i Math 2 [&1X]
Offset: -20 mA ~
3 E Range: Wmafdv v
-
l Math 3 FEd
-80 L b v v v P b1 L v b b P b v P b by b v b b v v b by
[x|=-135 0.8s 0.3s 0.2s 0.7s 125 175 225 275 325 3.7s
e . == _ [_ T, Smple Puse Protocol, &=
Mame Pin T 4096 samples at 500 Hz |
ide Seodd 10 Ny [Ny g (00T PT0 TT0T] (T TITT 1Tl pmin min m m i np g g gl |
Control HBLED N X T
A X:0s
ADC_IRQ_Handler | X
- I_—‘1'h7UDdabejcraan Period: 1.491 s / 0.67058 Hz / 69.656 %
Th_Update_Sareen B Mt seemmpasemani tome L1 L1 L1 L 1L L L M ML 1L T
TPMO_IRQ_Handler
Th_Read_TS/LP_ADC
Trouble I
My Project
Discovery2
SN:210321AA23AE
2020-11-22 11:17:05.618
-1.3s -0.8s 0.3s ‘ 0.2s 0.7s 12s 17s 22s 27s 3.2s 37s

Figure 6.3.

