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INTRODUCTION 

 

The purpose of this project is to alter the current software architecture of a given blinking high-brightness LED (HBLED) system so that various 

faults are properly handled to keep the system running smoothly without breaking. The current of the HBLED is controlled in a linearly decreasing 

& increasing fashion, producing a sawtooth wave. An oscilloscope and logic analyzer (AD2) is used to observe the analog signal that is the set & 

measured current of the HBLED, as well as various debug signals coming from the MCU. Faults are injected into the system using a routine which 

changes the values of vital control variables, acquires a mutex to block a thread, causes stack overflow via an infinite recursive call, and more. The 

program will continue to run where, in most cases, the program never self-corrects. To prevent this, the faults must be properly handled by 

implemented self-correcting aspects & fail-safes within the current software architecture.  

Each fault presented within this report is exactly 1 page long, accompanied by a description of the fault, before/after oscilloscope figures with 

descriptions, listings of added code, the approach taken to handle the fault, and an evaluation on its effectiveness.  

 

ADDITIONAL NOTES 

 

Some of the figures from the AD2 are difficult to see, due to the requirement of having 1 page per fault. Faults 0 through 6 have smaller & less 

legible scope figures than Faults 7 through 12, therefore an appendix is included to display larger versions of the former.  

During the time of exporting these figures, either there was a mistake with some DIO connections or I was sampling at a low rate, but the digital 

channels for Control_HBLED and ADC_IRQ_Handler (and sometimes others) appear not to display at the proper high frequency they should be. 

Nevertheless, these two channels aren’t used frequently in explanation of handling faults so it should not impact the quality of the report.  

  



FAULT 0 –  PID_FX  

 

 
 Figure 0.1. LED current does not follow setpoint after 
fault disables controller 

 
Figure 0.2. Two new functions added to control.c, control.h 

 

 Figure 0.3. Fault detection and response code corrects 
variable and keeps controller enabled without much change 
in system behavior 

 
Figure 0.4. make a copy of the current PID into 

plantPID_FX_setter 

FAULT DESCRIPTION 
This fault changed the proportional, integral, and derivative 
terms for plantPID_FX. This caused the current to not be 
properly controlled, hence the incorrect current seen in 
Figure 0.1. 

 

Figure 0.5. Check the current PID with plantPID_FX_setter in UpdatePID_FX. If wrong, reset the PID. Figure 0.4. occurs at the end of this routine. 

Fault Management Approach 
To fix the fault, an extra variable of type SPidFX was made called plantPID_FX_setter, which had the same initial values as plantPID_FX_setter (at 

the top of control.c). The name was selected because that’s what the variable was; the ‘setter’, as it set the value of the PID controller and acted as 

a backup. In essence, plantPID_FX was used to control the current values, and plantPID_FX_setter was used to control the plantPID_FX values. 

During UpdatePID_FX, before calculating the current value, a conditional statement (seen in Figure 0.5.) checks each value of the plantPID_FX and 

compares it to plantPID_FX_setter. If there are any differences, there was an improper change made to plantPID_FX. This calls the function 

reset_PID_FX, which takes all the PID terms from plantPID_FX_setter and sets them to a SPidFX pointer pid, (in this case plantPID_FX). The 

function returns, and since the PID changed the values at that address, the pointer values pid in the rest of the routine have changed. The function 

proceeds as normal, properly fixing the fault. 

To give the user the option to change the PID values without having it reset, another function is made called set_PID_FX (see Figure 0.2.), which 

takes in the P, I, and D terms and sets plantPID_FX_setter to those values. Then next time UpdatePID_FX runs, plantPID_FX will automatically be 

updated to plantPID_FX_setter values, effectively and properly changing the PID values. 

Evaluation of Effectiveness 
This approach is effective in the temporal and programming sense. There is a short period of time (~8ms, seen in Figure 0.3.) where the current 

plateaus and fails to continue its default sawtooth pattern, since during that period is when the fault occurs and the MCU handles the fault. 

Programmatically, any other file which includes control.h has the option of calling set_PID_FX to properly change the PID values, if need be. If 

set_PID_FX was not an option, then the program would only allow for the initial PID values to ever be set during the course of the runtime, which is 

very inflexible. 

  



FAULT 1 –  SET CURRENT HIGH

 

 
 

 Figure 1.1. LED current does not follow setpoint 
after fault disables controller 

 

 
Figure 1.2. A copy of g_set_current initialized at the 

top of control.c 

 

 Figure 1.3. Fault detection and response code 
corrects variable and keeps controller enabled without 
much change in system behavior 

 
Figure 1.4. make a copy of g_set_current into 

g_set_current_copy 

FAULT DESCRIPTION 
This fault changed the variable g_set_current to 1000, 
which is 1 ampere, overloading the LED, hence the 
incorrect current seen in Figure 1.1. 

 

Figure 1.5. Check if g_set_current equals g_set_current_copy in Update_Set_Current. If not, set them equal. Figure 1.4. occurs at the end of this 
routine. 

Fault Management Approach 
After realizing that the only place where g_set_current was being changed was in the routine Update_Set_Current, it was appropriate to use this 

function as the only location to evaluate whether or not g_set_current was changed outside of this routine. Using a similar approach seen in Fault 

0, a copy is made called g_set_current_copy in control.c (Figure 1.2.) and is compared to g_set_current within Update_Set_Current (Figure 1.5.). 

At the end of this routine (Figure 1.3.) the copy retains the value of g_set_current. Therefore, next time g_set_current is changed outside of 

Update_Set_Current, the copy will catch this and quickly fix the value of g_set_current.  

Evaluation of Effectiveness 
This approach is effective in the temporal sense, where similar to Fault 0 there is a ~8ms period where the set current and measure current 

plateaus (seen in Figure 1.3.). Afterward, there is no current spike (as in Figure 1.1.), but the sawtooth pattern properly continues. 

In the programming since, if the user/programmer would want the system to have a constant current then they must stop calling 

Update_Set_Current to prevent the sawtooth pattern. As a result, g_set_current_copy is never used, so the user is free to change g_set_current 

with no repercussions. This enables flexibility in programming while maintaining consistency with a controlling sequence such as the sawtooth in 

Update_Set_Current.  

 

  



FAULT 2 –  SET CURRENT LOW

 

 
 Figure 2.1. LED current does not follow setpoint 
after fault disables controller 

 
 

 
Figure 2.2. A copy of g_set_current initialized at the 

top of control.c 

 

 Figure 2.3. Fault detection and response code 
corrects variable and keeps controller enabled without 
much change in system behavior 

 
Figure 2.4. make a copy of g_set_current into 

g_set_current_copy 

 

FAULT DESCRIPTION 
This fault changed the variable g_set_current to 0, 
which turns off the LED, hence the incorrect current 
seen in Figure 2.1. 

 

Figure 2.5. Check if g_set_current equals g_set_current_copy in Update_Set_Current. If not, set them equal. Figure 2.4. occurs at the end of this 
routine. 

Fault Management Approach 
Since Fault 1 did not consider only “high” currents, but rather any change made to g_set_current outside of Update_Set_Current, the same 

approach fixes this low-current fault. See Fault 1 “Fault Management Approach” for more details regarding the fault management of this approach. 

Evaluation of Effectiveness 
Since both Fault 1 and 2 operate the same way, their effectiveness is the same. See Fault 1 “Evaluation of Effectiveness” for more details regarding 

the effectiveness of this approach.  

  



FAULT 3 –  DISABLE ADC IRQ

 

 
 Figure 3.1. LED current does not follow setpoint 
after fault disables controller. Can observe in digital 
that ADC_IRQ goes low at the same time when the 
current stays constant 

 

 
Figure 3.2. A copy and temporary variable of 

g_measured_current initialized at the top of control.c 

 

 Figure 3.3. Fault detection and response code 
corrects variable and keeps controller enabled without 
much change in system behavior 

 

FAULT DESCRIPTION 
This fault disabled the ADC0_IRQ handler, meaning no 
new ADC values can be generated. This keeps 
measured current constant, hence the incorrect 
updated current seen in Figure 3.1. 

 

Figure 3.4. A couple lines which determine whether or not to enable the ADC0_IRQ, explained in Fault Management Approach below 

Fault Management Approach 
To fix the fault, it first have to be understood what happens when the ADC IRQ is disabled. Control_HBLED is the only routine which pulls from the 

ADC, and the only place where Control_HBLED is called is within the ADC0_IRQ handler. Therefore, Control_HBLED stops being called, resulting in 

the current pattern in Figure 3.1. One can see that the blue trace still continues in the expected sawtooth pattern, meaning Update_Set_Current is 

still being called, updating the set current in the proper sawtooth pattern. Therefore, we can use Update_Set_Current to check the ADC and see 

whether or not Control_HBLED was called or not. 

In Control_HBLED, g_measured_current is updated by reading from the ADC. So if we make a variable called g_measured_current_prev, and copy 

g_measured_current in Update_Set_Current, then every time while the ADC is turned on g_measured_current will have the current current value 

while g_measured_current_prev will hold the previous current value. These two values are compared in Update_Set_Current (since this routine is 

called when ADC is turned off). If they are equal, it means that the ADC has not updated its value. Just to be sure that the ADC didn’t just generate 

the same value, the ADC is pulled from again and stored into g_measured_current_temp (to prevent messing with calculations which use 

g_measured_current and g_measured_current_prev). If this temporary variable and the previous current measurement are equal yet again, 

NVIC_EnableIRQ is called to enable ADC0_IRQ. If they aren’t equal, it continues and stores the now-previous current value into 

g_measured_current_prev.  

Evaluation of Effectiveness 
Temporally, this approach immediately handles the fault, with a similar 8ms window of current plateauing as seen in prior faults. Programmatically, 

this approach will continue to enable the ADC IRQ as long as Update_Set_Current is called to run. Otherwise, the ADC will not be enabled. If the 

user wishes to disable the ADC and run Update_Set_Current, this will not be possible unless they are aware of this added code. A simple Boolean 

can be implemented in the if statement in Figure 3.4. which defines auto-enabling of the ADC to solve the problem in the previous sentence. 



FAULT 4 –  CHANGE MCU CLOCK

 

 
 Figure 4.1. LED current follows setpoint but 
increases frequency 

 
Figure 4.2. A global copy of the initialized system clock 

is made in main.c 

 

 

 Figure 4.3. Fault detection and response code 
corrects variable and keeps controller enabled without 
much change in system behavior 

 

FAULT DESCRIPTION 
This fault changed the clock speed of the system by 
setting a new value to MCG->C6, hence the increased 
rate of current pattern seen in Figure 4.1. 

 

Figure 4.4. Check during the thread Thread_Buck_Update_Setpoint if the value of MCG->C6 equals the initial clock speed value set in main (seen in 
Figure 4.2.). If not, set them equal. 

Fault Management Approach 
The clock speed for the main clock of the KL25z uses Control Register 6 of the MCG (multipurpose clock generator). A char is initialized in main.c at 

the first line of main to copy the initialized clock speed (initialized in SystemInit in system_MKL25Z4.c) titled initial_clockspeed.  The 4-most LSB’s 

are important to consider since they control the multiplication factor to the reference clock frequency. MCG->C6 is initialized 0x40 (0 = 

multiplication factor of 24), but then the fault changes it to 0x4A (A = multiplication factor of 34), hence increasing the clock speed as seen in Figure 

4.1. To counter this, every time the thread Thread_Buck_Update_Setpoint is called, a check is made on the register 6 of MCG to ensure the clock 

speed stays at the initialized value. 

 

Figure 4.5. Description of reference to MCG->C6 LSB’s 

Evaluation of Effectiveness 
This approach is effective immediately, since the thread Thread_Buck_Update_Setpoint has the highest priority (being osPriorityAboveNormal) 

and is called at a high frequency to make small updates to the g_set_current via Update_Set_Current (as shown in previous faults). Meaning, since 

this thread has the highest priority, it is very effective in catching the fault quickly. From a programming standpoint, the clock speed is unable to be 

changed unless initial_clockspeed is changed with it. This is not ideal, but it prevents register 6 from being tampered with throughout the runtime. 



FAULT 5 –  SLOW TPM

 

 
 Figure 5.1. LED current does not follow setpoint after 
fault disables controller 

 
 
 

 
Figure 5.2. A line (not added) which is used to initialize 

the TPM0 counter in control.c, Init_Buck_HBLED 

 

 Figure 5.3. Fault detection and response code 
corrects variable and keeps controller enabled without 
much change in system behavior 

 

FAULT DESCRIPTION 
This fault changed the value for TPM0->MOD, the 
modulo register of the timer/PWM module, which 
changes the duty cycle of the PWM, hence the incorrect 
current seen in Figure 5.1. 

 

 
Figure 5.4. Check during the thread Thread_Buck_Update_Setpoint if the value of 
TPM0->MOD equals the initialized period for TPM0 (seen in Figure 5.2. and 5.5.). If 

not, set them equal. 

 
 

Figure 5.5. ➔ 
Store values for each TPM in tpm_periods array in the switch statement.. 

 

Fault Management Approach 
The timer/PWM module has three modules. The first of which is initialized from control.c (as seen in Figure 5.2.) and is the timer used to control 

the speed of the HBLED updating process. TPM0 is initialized in Init_Buck_HBLED → PWM_Init by passing in the location of TPM0 and its period. 

Within PWM_Init, the initialized periods are stored in a uint16_t array tpm_periods (seen in Figure 5.5.) which is a volatile and external array 

accessed in thread.c to check whether or not the current value in TPM0->MOD equals the initialized TPM period (Figure 5.4.). The same thread as 

the previous fault is used (thread Thread_Buck_Update_Setpoint) as this is the highest priority thread and will catch the fault during a very short 

period of time.  

Evaluation of Effectiveness 
Similar to the previous fault, the highest priority thread Thread_Buck_Update_Setpoint is used. Though a new high priority thread could be made 

to check both these faults, its effective in the way it works and how frequently this thread runs, allowing faults to be caught early. Therefore, the 

placement of this statement is temporally efficient but programmatically inefficient. However, each TPM module has its period stored and each 

TPM module can be initialized again to change the values in tpm_periods. So, unlike the previous fault, TPM0->MOD can be updated properly by 

calling PWM_Init again. These two aspects make the addition of tpm_periods an overall more efficient and flexible design, which could further be 

improved by making running a separate high priority thread solely for fault management. 



FAULT 6 –  LCD MUTEX

 

 
 Figure 6.1. LED current follows, but in digital 
Th_Update_Screen stopped being services 

 
Figure 6.2. Added function Init_COP_WDT to 

initialize the watchdog timer in main.c 

 

 Figure 6.3. Fault detection and response code 
resets system to properly start again 

 

FAULT DESCRIPTION 
This fault acquires the LCD mutex which blocks 
LCD_Text_PrintStr_RC from running, halting 
Thread_Update_Screen. Once the mutex is 
returned, only then will the OS continue to run 
the thread to properly update the screen 

 

 

Figure 6.4. Setup for Init_COP_WDT and Service_COP_WDT functions in timers.c 

 
Figure 6.5. Service the WDT within 

LCD_Test_PrintStr_RC 

Fault Management Approach 
After realizing that LCD_mutex is only used within functions LCD_Fill_Rectangle and LCD_Text_PrintStr_RC, this meant that a thread will be 

blocked upon the acquired mutex. After deciding to backtrack LCD_Text_PrintStr_RC (there were more instances of these function calls compared 

to LCD_Fill_Rectangle, meaning greater priority), the hierarchy was found to stem from thread Thread_Update_Screen and follow: 

UI_Draw_Screen → UI_Draw_Fields → LCD_Text_PrintStr_RC. If Thread_Update_Screen was being blocked, one of the most effective ways to 

unblock it without polling to check whether or not the LCD_mutex has been acquired or not was to service a watchdog timer (WDT) within 

LCD_Text_PrintStr_RC (Figure 6.5.) so once the thread it blocked for a sufficient amount of time, the WDT resets the system.  

The WDT is initialized by a call from main (Figure 6.2.) to timers.c to initialize the KL25z COP WDT with the specifications show in Figure 6.4. To 

service the WDT, a function in timers.c called Service_COP_WDT is created to change the value of SIM->SRVCOP to any value other than 0x55. 

After some time of not being serviced, the WDT will then reset the system. 

Evaluation of Effectiveness 
Since the system is reset using the WDT, there is a loss in temporal efficiency. Th_Update_Screen in the digital scope oscillates between 62.5ms 

high and 102.5ms low (duty cycle of ~38%) servicing the thread to update the LCD screen. Then in Figure 6.1. it can be seen that it stops being 

serviced and stays high. After the WDT is implemented and serviced (Figure 6.5.), it can be seen in Figure 6.3. that there is a 1.04s period where the 

system continues to run without the WDT resetting the system, roughly 6.3 cycles of Th_Update_Screen. Then it takes roughly 350ms for the 

system to reset (Figure 6.3.) before the sawtooth pattern emerges again to properly run.  

In most instances, the LCD_mutex would not be acquired outside of the Thread_Update_Screen thread, because it would be poor programming to 

update the LCD outside of a thread dedicated to updating the screen. In addition, it would be absurd to poll and continuously check whether this 

LCD_mutex value had been acquired or not, so a WDT is a good solution for handling this fault and any other non-responsive screen. 



FAULT 7 –  DISABLE ALL IRQS

 
Figure 7.1. All processes stop due to disabling of all IRQs 

 
Figure 7.2. Fault detection and response code resets system to properly start again 

FAULT DESCRIPTION 
This fault disables all IRQs, which prevents most aspects of the system from running 

Fault Management Approach 
Since all IRQs are disabled, the thread fault injector happens to stay within a continuous while loop with osDelay(FAULT_PERIOD). The delay occurs 

and the idle thread should run, but as seen in Figure 7.1. there is no idle thread signal. No other threads are called during this osDelay period, thus 

returning to the same osDelay(FAULT_PERIOD) line within the Thread_Fault_Injector. Because of this, Thread_Update_Screen never runs, thus 

never servicing the WDT within LCD_Test_PrintStr_RC. The WDT then decides to reset the system after the allotted time in the same way done in 

Fault 6. 

Refer to Figures 6.2., 6.4., and 6.5. for listings related to the WDT. 

Evaluation of Effectiveness 
The same temporal resolution for handling the fault results as in Fault 6: ~1.04s for the WDT to reset the system and ~350ms for the system to 

reset.  



FAULT 8 –  STACK OVERFLOW

 
Figure 8.1. All processes (threads) other than IRQ handlers stop due to infinite recursive loop 

 
Figure 8.2. Fault detection and response code resets system to properly start again 

FAULT DESCRIPTION 
This fault decides to run an infinite recursive loop, setting the argument of the function to 1 greater than the previous to cause a stack overflow 

Fault Management Approach 
The routine Fault_Recursion_Test(n) within fault.c returns the value Fault_Recursion_Test(n + 1), thus causing an infinite recursive loop of 

parameters within the stack. The stack will thus overflow. The only routines within the system capable of temporarily escaping this boundless hell 

are the interrupt service routines, which are all serviced properly. After being serviced, the CPU is directed back toward the Fault_Recursion_Test, 

never having time to run any of the threads within the RTOS. Because of this, Thread_Update_Screen never runs, thus never servicing the WDT 

within LCD_Test_PrintStr_RC. The WDT then decides to reset the system after the allotted time in the same way done in Fault 6 & 7. 

Refer to Figures 6.2., 6.4., and 6.5. for listings related to the WDT. 

Evaluation of Effectiveness 
The same temporal resolution for handling the fault results as in Faults 6 & 7: ~1.04s for the WDT to reset the system and ~350ms for the system to 

reset. 



FAULT 9 –  FILL  QUEUE

 
Figure 9.1. All processes (threads) other than IRQ handlers stop due to infinite loop 

 
Figure 9.2. Fault detection and response code resets system to properly start again 

FAULT DESCRIPTION 
This fault decides to run an infinite loop in Fault_Fill_Queue where OS messages are continuously added to a queue  

Fault Management Approach 
Very similar to the previous fault (Fault 8), there is an infinite loop which uses up all the time of the RTOS preventing other threads from running. It 

is evident how similar this fault is from the last by observing the digital signal between Figure 8.1. and Figure 9.1., where IRQs are still serviced but 

threads are not. Because of this, Thread_Update_Screen never runs, thus never servicing the WDT within LCD_Test_PrintStr_RC. The WDT then 

decides to reset the system after the allotted time in the same way done in Fault 6, 7, & 8. 

Refer to Figures 6.2., 6.4., and 6.5. for listings related to the WDT. 

Evaluation of Effectiveness 
The same temporal resolution for handling the fault results as in Faults 6, 7, & 8: ~1.04s for the WDT to reset the system and ~350ms for the 

system to reset. 



FAULT 10 –  DISABLE PERIPHERAL CLOCKS

 
Figure 10.1. Processes halt due to disabling of peripheral clock 

 
Figure 10.2. Fault detection and response code resets system to properly start again 

FAULT DESCRIPTION 
This fault sets the register SIM->SCGC6, which is the clock gating control register used, to 0, disabling all clocks set by SCGC6 

Fault Management Approach 
SIM->SCGC6 is the 6th register used by SIM which connects the clock to the following peripherals: TMP0-2, ADC0, DAC0, PIT, DMAMUX, and FTF. 

The 29th bit defines RTC access, which enables or disables access and interrupts. Because the entire register was set to 0, all the peripherals listed 

above cut their connections to the clock and RTC access is disabled. This means that TMP0, ADC0, and other interrupts used in this project are 

unable to be serviced. This can be seen in Figure 10.1. (contrast to Figures 8.1. and 9.1.) where interrupts are all low. And since the clock prevents 

some essential peripherals from running, the program appears to get stuck on an osDelay call right after the switch condition in Test Fault. Because 

of this, Thread_Update_Screen never runs, thus never servicing the WDT within LCD_Test_PrintStr_RC. The WDT then decides to reset the system 

after the allotted time in the same way done in Fault 6, 7, 8, & 9.  Refer to Figures 6.2., 6.4., and 6.5. for listings related to the WDT. 

Evaluation of Effectiveness 
The same temporal resolution for handling the fault results as in Faults 6, 7, 8, & 9: ~1.04s for the WDT to reset the system and ~350ms for the 

system to reset. 



FAULT 11 –  OS KERNEL LOCK

 
Figure 11.1. All threads locked while rest of the system continues 

 
Figure 11.2. Fault detection and response code resets system to properly start again 

FAULT DESCRIPTION 
This fault calls osKernelLock at a forbidden location with no osKernelUnlock to restore the RTOS 

Fault Management Approach 
The function osKernelLock essentially locks the RTOS kernel, preventing all tasks and threads from executing. When improperly called with no 

osKernelUnlock, the system has nothing to do, except service IRQs, since this system has already executed main. Normally, the OS would continue 

running forever. But due to the locking of the kernel, no threads are accessed. Because of this, Thread_Update_Screen never runs, thus never 

servicing the WDT within LCD_Test_PrintStr_RC. The WDT then decides to reset the system after the allotted time in the same way done in Fault 6, 

7, 8, 9, & 10. 

Refer to Figures 6.2., 6.4., and 6.5. for listings related to the WDT. 

Evaluation of Effectiveness 
The same temporal resolution for handling the fault results as in Faults 6, 7, 8, 9, & 10: ~1.04s for the WDT to reset the system and ~350ms for the 

system to reset. 



FAULT 12 –  HIGH PRIORITY THREAD

 
Figure 12.1. Most processes stop due to introduction of new higher priority thread 

 
Figure 12.2. Fault detection and response code resets system to properly start again 

FAULT DESCRIPTION 
This fault manifests a new higher priority thread whose only task is to toggle the DBG_FAULT signal 

Fault Management Approach 
A new thread of priority osPriorityRealtime (higher than our previous highest thread being priority osPriorityAboveNormal) is established and runs 

an infinite while loop toggling the DGB_FAULT signal, seen in the digital outputs of Figures 12.1. and 12.2. (though in Figure 12.1. it’s much lower 

resolution). The thread consumes the RTOS, never allowing any other threads to run (but allowing for normal IRQs, as seen in Figure 12.1.). 

Because of this, Thread_Update_Screen never runs, thus never servicing the WDT within LCD_Test_PrintStr_RC. The WDT then decides to reset 

the system after the allotted time in the same way done in Fault 6, 7, 8, 9, 10 & 11. 

Refer to Figures 6.2., 6.4., and 6.5. for listings related to the WDT. 

Evaluation of Effectiveness 
The same temporal resolution for handling the fault results as in Faults 6, 7, 8, 9, 10, & 11: ~1.04s for the WDT to reset the system and ~350ms for 

the system to reset. 



EXTRA CREDIT  

• Properly and efficiently handled all of the 13 faults (0 through 12) out of the 10 required for ECE 560 

• Same solution used to handle Faults 1 & 2 

• Same solution used to handle Faults 6, 7, 8, 9, 10, 11, & 12 

• Additional features of some solutions to add flexibility in further software development 

RETROSPECTIVE  

 

One of the key lessons I learned is how incredibly useful the watchdog timer can be in the dire most situations. It is best to service the watchdog 

timer on a thread or routine that should consistently be called throughout the runtime of the system, so that when the system breaks/crashes/etc., 

the watchdog timer is able to catch this and reset the system. It was not intended for the watchdog timer to solve 6 of the 13 faults, but it ended 

up being a very valuable resource. One thing I would do different next time is inhibit myself from using the watchdog timer for faults that can be 

solved otherwise. This would lead to a low-level analysis of the software as well as hardware architecture to understand precisely what is going 

wrong and how it can be caught, before getting out of hand. And this would result in a greater understanding of the KL25z as well as embedded 

systems as a whole.  

 

I would not change the project/course material to make it more effective and feasible, because I already think the way the information was present 

it already was effective and feasible. However, I would alter the project/course material to give students more hands-on development with the 

KL25z as well as more time.  

Rather than the premise of this project being “there are faults injected, handle them”, students should work on developing some end-of-semester 

project (similar to ECE 306) with prior specifications of making the software fault proof. What I mean, is giving the assignment “program X in a way 

where unsolicited changes of control variables A, B, and C are managed as well as managing the following common errors: stack overflow, filled 

queue, disable all IRQs, etc.” 

This would not only allow students to explore the KL25z more in developing this (simple) program “X”, but also they would have to develop their 

own fault testbench. If their program is clean, then they will have no problem implemented these fault handlers. If their program consists of 

spaghetti code, they will have a difficult time. And this project was quite straight forward because the code provided is extremely clean. 

 



APPENDIX 

 

Oscilloscope figures for Faults 0 – 6 are shown below, as an additional reference (if needed) due to their small scales on the pages. Faults 7 – 12 are not shown since these are already legible. 
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